1. Wu, F.-F. et al. A comprehensive study on crystal structure, phase compositions of the BiVO4-LaVO4 binary dielectric ceramic system and a typical design of dielectric resonator antenna for C-band applications. Appl. Mater. Today 38, 102222, (2024). https://doi.org/10.1016/j.apmt.2024.102222
2. Wang, X. et al. Effect of B-site complex substitutions on orthorhombic distortion and microwave dielectric properties of Ca(Zr0.95Ti0.05)O3 perovskites. J Mater Chem C 12, 3124-3131, (2024). https://doi.org/10.1039/D4TC00062E
3. Wang, W. et al. Low-permittivity BaCuSi4O10-based dielectric Ceramics: An available solution to connect low temperature cofired ceramic technology and millimeter-wave communications. Chem. Eng. J. 494, 153172, (2024). https://doi.org/10.1016/j.cej.2024.153172
4. Wang, Y. et al. Mechanically modulable and human–machine interactive luminescent fiber display platforms. MRS Bull. 49, 802-816, (2024). https://doi.org/10.1557/s43577-024-00735-4
5. Tang, B. et al. A Janus dual-atom catalyst for electrocatalytic oxygen reduction and evolution. Nature Synthesis 3, 878-890, (2024). https://doi.org/10.1038/s44160-024-00545-1
6. Wan, X. et al. A nonmetallic plasmonic catalyst for photothermal CO2 flow conversion with high activity, selectivity and durability. Nat. Commun. 15, 1273, (2024). https://doi.org/10.1038/s41467-024-45516-4
7. Ma, L. et al. A novel high hardness and low loss Mg5Ga2Sn2O12 ceramic with spinel-structure. Ceram. Int. 50, 38063-38069, (2024). https://doi.org/10.1016/j.ceramint.2024.07.168
8. Jiang, L., Du, Q., Ma, L., Tian, G. & Li, H. A novel LiMg2P3O10 microwave dielectric ceramic for ultra-wideband dielectric resonant antenna applications. Ceram. Int. 50, 50560-50568, (2024). https://doi.org/10.1016/j.ceramint.2024.09.401
9. Ma, L. et al. A novel spinel-type Mg3Ga2SnO8 microwave dielectric ceramic with low εr and low loss. J. Eur. Ceram. Soc. 44, 5731-5737, (2024). https://doi.org/10.1016/j.jeurceramsoc.2024.03.027
10. Liu, Y. et al. A Polyanionic Hydrogel Electrolyte with Ion Selective Permeability for Building Ultra-Stable Zn/I2 Batteries with 100 °C Wide Temperature Range. Adv. Funct. Mater. 34, 2400517, (2024). https://doi.org/10.1002/adfm.202400517
11. Hu, C. et al. A setup for synchrotron infrared microspectroscopy and imaging under magnetic field and low temperature. Rev. Sci. Instrum. 95, 073713, (2024). https://doi.org/10.1063/5.0202127
12. Li, Q. et al. Accumulation and distribution of cadmium at organic-mineral micro-interfaces across soil aggregates. Ecotoxicol. Environ. Saf. 289, 117457, (2025). https://doi.org/10.1016/j.ecoenv.2024.117457
13. Luo, X. et al. Air-Stable and Low-Cost High-Voltage Hydrated Eutectic Electrolyte for High-Performance Aqueous Aluminum-Ion Rechargeable Battery with Wide-Temperature Range. ACS Nano 18, 12981-12993, (2024). https://doi.org/10.1021/acsnano.4c01276
14. Lin, X. et al. Alleviating OH Blockage on the Catalyst Surface by the Puncture Effect of Single-Atom Sites to Boost Alkaline Water Electrolysis. J. Am. Chem. Soc. 146, 4883-4891, (2024). https://doi.org/10.1021/jacs.3c13676
15. Qiao, L. et al. Anisotropic optical response of Nb2SiTe4 under pressure. Appl. Phys. Lett. 125, 042108, (2024). https://doi.org/10.1063/5.0215277
16. Li, L. et al. Artificial Chlorophyll-like Structure for Photocatalytic CO2 Chemical Fixation. CCS Chemistry 6, 3077-3088, (2024). https://doi.org/10.31635/ccschem.024.202404189
17. Qian, F. et al. Asymmetric active sites originate from high-entropy metal selenides by joule heating to boost electrocatalytic water oxidation. Joule 8, 2342-2356, (2024). https://doi.org/10.1016/j.joule.2024.06.004
18. Liu, D. et al. Atomically precise Ru-O-Ru clusters for enhanced water dissociation in alkaline hydrogen evolution. Nano Res. 17, 6993-7000, (2024). https://doi.org/10.1007/s12274-024-6726-y
19. Pan, Y., Qi, Z., Hu, J., Zheng, X. & Wang, X. Bio-molecular analyses enable new insights into the taphonomy of feathers. PNAS Nexus 3, pgae341, (2024). https://doi.org/10.1093/pnasnexus/pgae341
20. Yang, H. et al. Bond theory, vibrational spectroscopy, and dielectric responses of trirutile ATa2O6 (A = Mg, Ni) microwave ceramics. Ceram. Int. 50, 19171-19181, (2024). https://doi.org/10.1016/j.ceramint.2024.03.017
21. Xu, L. et al. Boosting Electrocatalytic Ammonia Synthesis via Synergistic Effect of Iron-Based Single Atoms and Clusters. Nano Lett. 24, 1197-1204, (2024). https://doi.org/10.1021/acs.nanolett.3c04049
22. Lv, L. et al. Breaking the Scaling Relationship in C−N Coupling via the Doping Effects for Efficient Urea Electrosynthesis. Angew. Chem. Int. Ed. 63, e202401943, (2024). https://doi.org/10.1002/anie.202401943
23. Chen, W. et al. Catalyst Selection over an Electrochemical Reductive Coupling Reaction toward Direct Electrosynthesis of Oxime from NOx and Aldehyde. J. Am. Chem. Soc. 146, 6294-6306, (2024). https://doi.org/10.1021/jacs.3c14687
24. Yang, X. et al. Charging modulation of the pyridine nitrogen of covalent organic frameworks for promoting oxygen reduction reaction. Nat. Commun. 15, 1889, (2024). https://doi.org/10.1038/s41467-024-46291-y
25. Lin, Y. et al. Constructing Asymmetric Charge Polarized NiCo Prussian Blue Analogue for Promoted Electrocatalytic Methanol to Formate Conversion. Small 20, 2311452, (2024). https://doi.org/10.1002/smll.202311452
26. Zhou, X. et al. Constructing sulfur and oxygen super-coordinated main-group electrocatalysts for selective and cumulative H2O2 production. Nat. Commun. 15, 193, (2024). https://doi.org/10.1038/s41467-023-44585-1
27. Li, X. et al. Construction of a Pore-Confined Catalyst in a Vinylene-Linked Covalent Organic Framework for the Oxygen Reduction Reaction. ACS Catal. 14, 17862-17870, (2024). https://doi.org/10.1021/acscatal.4c05827
28. Chen, Q. et al. Continuously Geometrical Tuning to Boost Circular Dichroism in 3D Chiral Metamaterials. Adv. Opt. Mater. 12, 2400593, (2024). https://doi.org/10.1002/adom.202400593
29. Song, F. et al. Crystal structures, dielectric properties, and lattice vibrational characteristics of Zn1-xCaxWO4 (x = 0–0.25) composite ceramics. J. Alloys Compd. 1004, 175597, (2024). https://doi.org/10.1016/j.jallcom.2024.175597
30. Cao, J. et al. Depolymerization mechanisms and closed-loop assessment in polyester waste recycling. Nat. Commun. 15, 6266, (2024). https://doi.org/10.1038/s41467-024-50702-5
31. Chen, Z. et al. Directional Construction of the Highly Stable Active-Site Ensembles at Sub-2 nm to Enhance Catalytic Activity and Selectivity. Adv. Mater. 36, 2405733, (2024). https://doi.org/10.1002/adma.202405733
32. Song, J. et al. Directional Formation of Reactive Oxygen Species Via a Non-Redox Catalysis Strategy That Bypasses Electron Transfer Process. Adv. Mater. 36, 2405832, (2024). https://doi.org/10.1002/adma.202405832
33. Hua, K. et al. Dual-active sites and reversible-structural covalent organic framework for highly stable alkali metal-ion batteries. Chem. Eng. J. 498, 155289, (2024). https://doi.org/10.1016/j.cej.2024.155289
34. Fang, W. et al. Durable CO2 conversion in the proton-exchange membrane system. Nature 626, 86-91, (2024). https://doi.org/10.1038/s41586-023-06917-5
35. Liu, M. et al. Dynamic-Cycling Zinc Sites Promote Ruthenium Oxide for Sub-Ampere Electrochemical Water Oxidation. Nano Lett. 24, 16055-16063, (2024). https://doi.org/10.1021/acs.nanolett.4c04485
36. Xu, A. et al. Edge-Rich Pt−O−Ce Sites in CeO2 Supported Patchy Atomic-Layer Pt Enable a Non-CO Pathway for Efficient Methanol Oxidation. Angew. Chem. Int. Ed. 63, e202410545, (2024). https://doi.org/10.1002/anie.202410545
37. Xu, X. et al. Effect of (Ba1/3Ta2/3)4+ substitution on microstructure, bonding properties and microwave dielectric properties of zirconium-cerium molybdate ceramics and the fabrication of S-band patch antennas. J. Alloys Compd. 1006, 176238, (2024). https://doi.org/10.1016/j.jallcom.2024.176238
38. Gao, H. et al. Effect of (Ba1/3Nb2/3)4+ Substitution on Microstructure, Bonding Properties and Microwave Dielectric Properties of Ce2Zr3(MoO4)9 Ceramics. Ceramics 7, 1172-1186, (2024). https://doi.org/10.3390/ceramics7030077
39. Wang, L. et al. Effects of (Cd1/3Sb2/3)4+ co-substitution on the crystal structure, chemical bond characteristics, and microwave dielectric properties of CeO2-ZrO2-MoO3 ceramics. Ceram. Int. 50, 45144-45154, (2024). https://doi.org/10.1016/j.ceramint.2024.08.354
40. Dong, J. et al. Effects of sintering temperatures on crystal structures, dielectric properties, and phonon characteristics of Sr2V2O7 microwave ceramics. Ceram. Int. 50, 34395-34402, (2024). https://doi.org/10.1016/j.ceramint.2024.06.258
41. Feng, Z. et al. Effects of W6+ on the microstructure, sinterability, lattice vibration, and dielectric properties of Pr2Zr3(Mo1˗xWxO4)9 ceramics at microwave/terahertz/infrared regions. Ceram. Int. 50, 16869-16874, (2024). https://doi.org/10.1016/j.ceramint.2024.02.160
42. Wang, D. et al. Effects of Zn2+ substitution on the dielectric properties, chemical bonding properties, and crystal structure of Mg3(PO4)2 ceramics. Ceram. Int. 50, 36220-36229, (2024). https://doi.org/10.1016/j.ceramint.2024.07.006
43. Liu, S. et al. Efficient Thermal Management with Selective Metamaterial Absorber for Boosting Photothermal CO2 Hydrogenation under Sunlight. Adv. Mater. 36, 2311957, (2024). https://doi.org/10.1002/adma.202311957
44. Pan, Y. et al. Electrocatalytic Coupling of Nitrate and Formaldehyde for Hexamethylenetetramine Synthesis via C–N Bond Construction and Ring Formation. J. Am. Chem. Soc. 146, 19572-19579, (2024). https://doi.org/10.1021/jacs.4c06840
45. Tang, C. et al. Electrocatalytic hydrogenation of acetonitrile to ethylamine in acid. Nat. Commun. 15, 3233, (2024). https://doi.org/10.1038/s41467-024-47622-9
46. Zhao, X. et al. Electrolyte-free electrochemical oxygen generator for providing sterile and medical-grade oxygen in household applications. Device 2, 100360, (2024). https://doi.org/10.1016/j.device.2024.100360
47. Wang, W. et al. Electropolymerized Bipolar Poly(2,3-diaminophenazine) Cathode for High-Performance Aqueous Al-Ion Batteries with An Extended Temperature Range of −20 to 45 °C. Adv. Mater. 36, 2400642, (2024). https://doi.org/10.1002/adma.202400642
48. Shang, Y. et al. Endowing polymeric carbon nitride photocatalyst with CO2 activation sites by anchoring atomic cobalt cluster. Chem. Eng. J. 486, 150306, (2024). https://doi.org/10.1016/j.cej.2024.150306
49. Ge, X., Wang, J., Zhou, D., Wang, X. & Wu, Y. Engineering ultra-low density and fully exposed atomic cobalt sites for antibiotics removal. Science China Materials 67, 2355-2362, (2024). https://doi.org/10.1007/s40843-024-2979-6
50. Cheng, J. et al. Fully Conjugated 2D sp2 Carbon-Linked Covalent Organic Frameworks for Photocatalytic Overall Water Splitting. Adv. Mater. 36, 2305313, (2024). https://doi.org/10.1002/adma.202305313
51. Kang, N., Lin, J., Lu, S., Zhao, Z. & Yu, X. Halogenated extinguishing agent interference on CO catalytic oxidation over CuCeOx catalyst at low temperature: Mechanism and resistance strategy. J. Environ. Chem. Eng. 12, 113076, (2024). https://doi.org/10.1016/j.jece.2024.113076
52. Zhang, L. et al. Highly dispersed ultrafine PtCo alloy nanoparticles on unique composite carbon supports for proton exchange membrane fuel cells. Nanoscale 16, 2868-2876, (2024). https://doi.org/10.1039/D3NR05403A
53. Xiong, H. et al. Highly Efficient and Selective Light-Driven Dry Reforming of Methane by a Carbon Exchange Mechanism. J. Am. Chem. Soc. 146, 9465-9475, (2024). https://doi.org/10.1021/jacs.4c02427
54. Li, S. et al. Highly efficient anion exchange membrane water electrolyzers via chromium-doped amorphous electrocatalysts. Nat. Commun. 15, 3416, (2024). https://doi.org/10.1038/s41467-024-47736-0
55. Zhai, G. et al. Highly efficient, selective, and stable photocatalytic methane coupling to ethane enabled by lattice oxygen looping. Sci. Adv. 10, eado4390, (2024). https://doi.org/10.1126/sciadv.ado4390
56. Li, H. et al. Hole Polaron-Mediated Suppression of Electron–Hole Recombination Triggers Efficient Photocatalytic Nitrogen Fixation. Adv. Mater. 36, 2408778, (2024). https://doi.org/10.1002/adma.202408778
57. Jiang, J. et al. In situ Activation of Molecular Oxygen at Intermetallic Spacing-Optimized Iron Network-Like Sites for Boosting Electrocatalytic Oxygen Reduction. Small 20, 2310163, (2024). https://doi.org/10.1002/smll.202310163
58. Liu, M. et al. In situ modulating coordination fields of single-atom cobalt catalyst for enhanced oxygen reduction reaction. Nat. Commun. 15, 1675, (2024). https://doi.org/10.1038/s41467-024-45990-w
59. Zhu, M. et al. In Situ Nitrogen Infiltration into an Ordered Pt3Co Alloy with sp–d Hybridization to Boost Fuel Cell Performance. ACS Catal. 14, 5858-5867, (2024). https://doi.org/10.1021/acscatal.3c06223
60. Tang, B. et al. Investigation of the Relationship between Metal Loading and Acidic Oxygen Evolution Reaction Activity in Single-Atom Catalysts. ACS Catal. 14, 3788-3797, (2024). https://doi.org/10.1021/acscatal.3c06263
61. Feng, Z. et al. Ionic doping engineered Ce2(Zr1−xBx)3(MoO4)9 (BCd1/3Nb2/3, Cd1/3Ta2/3) ceramics: Structural, chemical bond, and microwave/terahertz dielectric performance. Ceram. Int. 50, 8643-8651, (2024). https://doi.org/10.1016/j.ceramint.2023.12.018
62. Yan, M. et al. Large-scale manufacturing of functional single-atom ink for convenient glucose sensing. Nano Res. 17, 7256-7263, (2024). https://doi.org/10.1007/s12274-024-6702-6
63. Chen, Z. et al. Laser-assisted synthesis of PtPd alloy for efficient ethanol oxidation. Nano Res. 17, 6032-6037, (2024). https://doi.org/10.1007/s12274-024-6662-x
64. Feng, S. et al. Leveraging phenazine and dihydrophenazine redox dynamics in conjugated microporous polymers for high-efficiency overall photosynthesis of hydrogen peroxide. Chem Sci 15, 11972-11980, (2024). https://doi.org/10.1039/D4SC02832E
65. Xiong, H. et al. Light-Driven Reverse Water Gas Shift Reaction with 1000-H Stability on High-Entropy Alloy Catalysts. Adv. Mater. 36, 2409689, (2024). https://doi.org/10.1002/adma.202409689
66. Song, J. et al. Local CO Generator Enabled by a CO-Producing Core for Kinetically Enhancing Electrochemical CO2 Reduction to Multicarbon Products. ACS Nano 18, 11416-11424, (2024). https://doi.org/10.1021/acsnano.4c01599
67. Zhang, Y. et al. Low dielectric loss in vanadium-based zircon ceramics via high-entropy strategy. J. Adv. Ceram. 14, 9221012, (2025). https://doi.org/10.26599/JAC.2024.9221012
68. Tian, H., Zhang, X., Zhang, Z., Liu, Y. & Wu, H. Low-permittivity LiLn(PO3)4 (Ln = La, Sm, Eu) dielectric ceramics for microwave/millimeter-wave communication. J. Adv. Ceram. 13, 602-620, (2024). https://doi.org/10.26599/JAC.2024.9220882
69. Wei, M. et al. Low permittivity MgF2-LiF ceramics with ultra-low dielectric loss for ULTCC applications. J. Eur. Ceram. Soc. 44, 6495-6500, (2024). https://doi.org/10.1016/j.jeurceramsoc.2024.03.065
70. Xu, X. et al. Low sintering temperature, interface characteristic and microwave/terahertz dielectric properties of ternary-phase Nd2O3-P2O5 based ceramics for patch antenna application. Surf. Interfaces 54, 105201, (2024). https://doi.org/10.1016/j.surfin.2024.105201
71. Li, S. et al. Low-coordinated Fe−N3 single atom with rapid protonation for boosting oxygen reduction reactions. Chem. Eng. J. 502, 157940, (2024). https://doi.org/10.1016/j.cej.2024.157940
72. Liu, T. et al. Manipulation of d-Orbital Electron Configurations in Nonplanar Fe-Based Electrocatalysts for Efficient Oxygen Reduction. ACS Nano 18, 28433-28443, (2024). https://doi.org/10.1021/acsnano.4c11356
73. Shang, S. et al. Metal–Semiconductor Heterojunction with Ohmic Contact Realizes Efficient Infrared-Light-Driven Photocatalysis. Nano Lett. 24, 9760-9767, (2024). https://doi.org/10.1021/acs.nanolett.4c02879
74. Xu, X. et al. Microstructure, bonding characteristics, far-infrared spectra and microwave dielectric properties of co-substituted Ce2[(Zr1-x(Zn1/3Sb2/3)x]3(MoO4)9 ceramics. Ceram. Int. 50, 24769-24780, (2024). https://doi.org/10.1016/j.ceramint.2024.04.213
75. Yang, H. et al. Mo site nonstoichiometry engineering: An effective strategy to enhance microwave dielectric properties of Al2Mo3+xO12 ceramic. Ceram. Int. 51, 2226-2233, (2025). https://doi.org/10.1016/j.ceramint.2024.11.200
76. Tu, Y. et al. Modulating Nanoparticle Structure by Metal–Metal Oxide Interfacial Interaction in a CeO2-Supported Bimetallic System: The Ni–Cu Case. The Journal of Physical Chemistry Letters 15, 4096-4104, (2024). https://doi.org/10.1021/acs.jpclett.4c00810
77. Chen, X. et al. Modulating the Ruthenium-Cobalt Active Pair with Moderate Spacing for Enhanced Acidic Water Oxidation. Small 21, 2409173, (2025). https://doi.org/10.1002/smll.202409173
78. 张静宜, 黄圣轩 & 秦善. NH4Cl的高压相变及弹性性质实验研究. 北京大学学报(自然科学版) 61, 121-129, (2025). https://doi.org/10.13209/j.0479-8023.2024.086
79. Bao, J., Du, W., Wu, H. & Yue, Z. Novel microwave dielectric ceramics based on CaO–MoO3–La2O3 pseudo-ternary phase diagram and the design of patch antenna. J. Am. Ceram. Soc. 107, 704-718, (2024). https://doi.org/10.1111/jace.19524
80. Ji, Q. et al. Operando identification of the oxide path mechanism with different dual-active sites for acidic water oxidation. Nat. Commun. 15, 8089, (2024). https://doi.org/10.1038/s41467-024-52471-7
81. Lin, Y. et al. Optimizing Local Configuration of Interphase Copper Oxide by Ru Atoms Incorporation for High-Efficient Nitrate Reduction to Ammonia. Adv. Funct. Mater. 35, 2417486, (2025). https://doi.org/10.1002/adfm.202417486
82. Kang, J. et al. Organo–organic interactions dominantly drive soil organic carbon accrual. Glob. Chang. Biol. 30, e17147, (2024). https://doi.org/10.1111/gcb.17147
83. Wu, X. et al. Pluralistic Electronic Structure Modulation of Ruthenium Oxide for Enhanced Acidic Water Electrolysis. Small Structures 5, 2300518, (2024). https://doi.org/10.1002/sstr.202300518
84. Wang, J., Ge, X., Yin, W., Wang, X. & Wu, Y. Precise Modulation of the Coordination Environment of Single Cu Site Catalysts to Regulate the Peroxymonosulfate Activation Pathway for Water Remediation. Inorg. Chem. 63, 9307-9314, (2024). https://doi.org/10.1021/acs.inorgchem.4c01144
85. Feng, S. et al. Rational Design of Covalent Organic Frameworks with Redox-Active Catechol Moieties for High-Performance Overall Photosynthesis of Hydrogen Peroxide. ACS Catal. 14, 7736-7745, (2024). https://doi.org/10.1021/acscatal.4c01411
86. Zhao, Q. et al. Rearranging Spin Electrons by Axial-Ligand-Induced Orbital Splitting to Regulate Enzymatic Activity of Single-Atom Nanozyme with Destructive d−π Conjugation. J. Am. Chem. Soc. 146, 14875-14888, (2024). https://doi.org/10.1021/jacs.4c04322
87. Wang, W. et al. Reconstructed parallel sites enhance the reactive oxygen tolerance of non-noble metal catalyst for durable proton exchange membrane fuel cells. Science China Chemistry 67, 3739-3748, (2024). https://doi.org/10.1007/s11426-024-2067-0
88. Cheng, M. et al. Rectifying Heterointerface Facilitated C−N Coupling Dynamics Enables Efficient Urea Electrosynthesis Under Ultralow Potentials. Angew. Chem. Int. Ed. 64, e202413534, (2025). https://doi.org/10.1002/anie.202413534
89. Zhang, X. et al. Regulated Hydrated Eutectic Electrolyte Enhancing Interfacial Chemical Stability for Highly Reversible Aqueous Aluminum-Ion Battery with a Wide Temperature Range of −20 to 60 °C. Adv. Energy Mater. 14, 2400314, (2024). https://doi.org/10.1002/aenm.202400314
90. Liu, T. et al. Regulating atomic Fe-Rh site distance for efficient oxygen reduction reaction. Science China Chemistry 67, 1352-1359, (2024). https://doi.org/10.1007/s11426-023-1889-6
91. Liu, X. et al. Regulating Surface Dipole Moments of TiO2 for the pH-Universal Cathodic Fenton-Like Process. Environ. Sci. Technol. 58, 9436-9445, (2024). https://doi.org/10.1021/acs.est.4c02577
92. Sun, Z. et al. Regulating the Local Microenvironment of an Fe−N4 Single-Atom Catalyst for Enhanced Oxygen Reduction Reaction. J. Phys. Chem. C 128, 7463-7471, (2024). https://doi.org/10.1021/acs.jpcc.4c01551
93. Liu, B. et al. Re-understanding and mitigating hydrogen release chemistry toward reversible aqueous zinc metal batteries. eScience, 100330, (2024). https://doi.org/10.1016/j.esci.2024.100330
94. Zhang, X. et al. Selective nitrogen fixation via Janus C-N coupling in co-electrolysis. Chem 10, 1516-1527, (2024). https://doi.org/10.1016/j.chempr.2024.01.025
95. Zhang, X. et al. Self-Assembly Intermetallic PtCu3 Core with High-Index Faceted Pt Shell for High-Efficiency Oxygen Reduction. Nano Lett. 24, 3213-3220, (2024). https://doi.org/10.1021/acs.nanolett.4c00111
96. Xu, Y. et al. Silver Single Atoms Combined with Clusters on Carbon Nanotubes Mediates Exclusive Electrochemical CO2-to-CO Conversion. Adv. Energy Mater. 14, 2400143, (2024). https://doi.org/10.1002/aenm.202400143
97. Shang, S. et al. Single-atom-mediated electron islands boost photocatalytic CO2 chemical fixation. Science China Chemistry 67, 2292-2299, (2024). https://doi.org/10.1007/s11426-024-1970-5
98. Li, Q., Chang, J., Li, L., Lin, X. & Li, Y. Soil amendments alter cadmium distribution and bacterial community structure in paddy soils. Sci. Total Environ. 924, 171399, (2024). https://doi.org/10.1016/j.scitotenv.2024.171399
99. Hu, H. et al. Spiral Square Nanosheets Assembled from Ru Clusters. J. Am. Chem. Soc. 145, 12148-12154, (2023). https://doi.org/10.1021/jacs.3c01738
100. Yang, Y. et al. SrGa12O19: The first low-εr Ga-based microwave dielectric ceramic with anomalous positive τf. J. Adv. Ceram. 13, 1432-1441, (2024). https://doi.org/10.26599/JAC.2024.9220947
101. Pan, X. et al. Stabilization of active ultrathin amorphous ruthenium oxide via constructing electronically interacted heterostructure for acidic water oxidation. Green Energy Environ. 10, 551-559, (2025). https://doi.org/10.1016/j.gee.2024.05.003
102. Li, R. et al. Stabilizing Few-Atom Platinum Clusters by Zinc Single-Atom-Glue for Efficient Anti-Markovnikov Alkene Hydrosilylation. Angew. Chem. Int. Ed. 63, e202404568, (2024). https://doi.org/10.1002/anie.202404568
103. Sánchez, H. J. et al. Structural changes at dental tissue interfaces characterized by energy-dispersive resonant inelastic X-ray scattering and FTIR techniques. X-Ray Spectrom. 54, 254-263, (2025). https://doi.org/10.1002/xrs.3454
104. Tian, H. et al. Structure characteristics and microwave/terahertz dielectric response of low-permittivity (La0.2Nd0.2Sm0.2Eu0.2Gd0.2)2Zr3(MoO4)9 high-entropy ceramics. Ceram. Int. 50, 6403-6411, (2024). https://doi.org/10.1016/j.ceramint.2023.11.378
105. Xiang, H. et al. Structure evolution and τf influence mechanism of Bi1–xHoxVO4 microwave dielectric ceramics for LTCC applications. Journal of Materials Science & Technology 197, 1-8, (2024). https://doi.org/10.1016/j.jmst.2024.01.070
106. Duan, S., Qing, Z., Liu, A., Li, H. & Xue, Y. Structure, bond characteristics, and microwave dielectric properties of Ba3La(PO4)3 ceramic. Ceram. Int. 50, 29859-29865, (2024). https://doi.org/10.1016/j.ceramint.2024.05.281
107. Chen, C. et al. Supported Au single atoms and nanoparticles on MoS2 for highly selective CO2-to-CH3COOH photoreduction. Nat. Commun. 15, 7825, (2024). https://doi.org/10.1038/s41467-024-52291-9
108. Li, L. et al. Symmetry-Broken Steered Delocalization State in a Single-Atom Photocatalyst. Nano Lett. 24, 14412-14419, (2024). https://doi.org/10.1021/acs.nanolett.4c04304
109. Zhang, Y. et al. Synergy of Photogenerated Electrons and Holes toward Efficient Photocatalytic Urea Synthesis from CO2 and N2. Angew. Chem. Int. Ed. 63, e202405637, (2024). https://doi.org/10.1002/anie.202405637
110. Ma, L. et al. Temperature-stable Li4Ti3O8 composite microwave dielectric ceramic and its applications in dielectric resonator antennas. J Mater Chem C 12, (2024). https://doi.org/10.1039/D4TC00930D
111. Su, H. et al. Tensile straining of iridium sites in manganese oxides for proton-exchange membrane water electrolysers. Nat. Commun. 15, 95, (2024). https://doi.org/10.1038/s41467-023-44483-6
112. Xu, X. et al. The crystal structure and electric and microwave dielectric properties of novel scheelite structure NaEr(MoO4)2 ceramics and its application in the S-band. J Mater Chem C 12, 18021-18035, (2024). https://doi.org/10.1039/D4TC02895C
113. Wu, D. et al. The dual-functional role of carboxylate in a nickel–iron catalyst towards efficient oxygen evolution. Nanoscale 16, 19364-19373, (2024). https://doi.org/10.1039/D4NR03689A
114. Duan, D. et al. Thermal Management Approach to Stabilization of Disordered Active Sites for Sabatier Reaction. Advanced Science 12, 2409048, (2025). https://doi.org/10.1002/advs.202409048
115. Wang, L. et al. Thermocatalytic Hydrogen Production from Water at Boiling Condition. Small 20, 2400561, (2024). https://doi.org/10.1002/smll.202400561
116. Liu, M. et al. Tracking the role of compressive strain in bowl-Like Co-MOFs structural evolution in water oxidation reaction. Applied Catalysis B: Environment and Energy 354, 124114, (2024). https://doi.org/10.1016/j.apcatb.2024.124114
117. Ma, J. et al. Tuning the selectivity of photothermal CO2 hydrogenation through photo-induced interaction between Ni nanoparticles and TiO2. Applied Catalysis B: Environment and Energy 344, 123600, (2024). https://doi.org/10.1016/j.apcatb.2023.123600
118. Wu, D. et al. Uncovering Self-Optimization of Single-Atom Alloy for Active CO<sub>2</sub> Electrochemical Reduction Reaction. Chinese J Chem Phys, 1-10, (2024). https://doi.org/10.1063/1674-0068/cjcp2409125
119. Cheng, J. et al. Unlocking Topological Effects in Covalent Organic Frameworks for High-Performance Photosynthesis of Hydrogen Peroxide. Adv. Mater. 37, 2410247, (2025). https://doi.org/10.1002/adma.202410247
120. Zhang, D. et al. Unraveling the Surface Structure of Ceria-Supported Bimetal Co–Cu Nanoparticles. J. Phys. Chem. C 128, 9051-9059, (2024). https://doi.org/10.1021/acs.jpcc.4c01959
121. Fang, Y. et al. Unveiling the nature of Pt-induced anti-deactivation of Ru for alkaline hydrogen oxidation reaction. Nat. Commun. 15, 1614, (2024). https://doi.org/10.1038/s41467-024-45873-0
122. Deng, S. et al. Upconversion Phosphor-Driven Photodegradation of Plastics. Nano Lett. 24, 14082-14090, (2024). https://doi.org/10.1021/acs.nanolett.4c04138
123. Su, R. et al. Utilizing the oxygen-atom trapping effect of Co3O4 with oxygen vacancies to promote chlorite activation for water decontamination. Proceedings of the National Academy of Sciences 121, e2319427121, (2024). https://doi.org/10.1073/pnas.2319427121
124. Jiang, S. et al. Visualization of the Distance-Dependent Synergistic Interaction in Heterogeneous Dual-Site Catalysis. J. Am. Chem. Soc. 146, 29084-29093, (2024). https://doi.org/10.1021/jacs.4c10613